Skip to content

Chemical Analysis of Buried Interface Using SERS Sensors

MetadataDetails
Publication Date2016-01-01
JournalHyomen Kagaku
AuthorsMasahiro Yanagisawa, Takayuki Homma
InstitutionsWaseda University

New technique for analyzing buried interface has developed based on surface-enhanced Raman scattering spectroscopy. It consists of plasmonic sensors and spectrometer equipped with high precision mechanisms. Performance of the system involves in-situ measurement of interfaces, i.e. liquid/solid or solid/solid, with high sensitivity and high depth resolution on a variety of samples. Additional functions are in-situ temperature measurement by anti-Stokes/Stokes ratio, simultaneous acquisition with laser heating, time-resolved measurement, and pulsed laser Raman spectroscopy. A depth profile of layered ultra-thin films, i.e. diamond-like carbon (DLC) or highly oriented pyrolytic graphite (HOPG), was analyzed in atomic scale resolution at solid/solid interface. Molecular configuration and bonding feature of liquid organic molecules, i.e. lubricants for magnetic disks or reducing agents for a plating, were analyzed at liquid/solid interface. Oxidation process or decomposition process of ultra-thin DLC films was analyzed for a variety of DLC films. Spectral change with irradiation time by pulsed laser heating exhibited a kinetic change of molecular structures in a chemical reaction with in-situ heating temperature measurement.