Skip to content

Prospects for broadband spectrum Raman optical refrigeration

MetadataDetails
Publication Date2018-09-14
AuthorsReid Vorbach, C.M. Fortmann, Rachel Tyo, Claire Alvine, Mostafa Sadoqi
Citations3

Described are the prospects for broadband optical refrigeration based on Raman scattering of incoherent light. Laser pumped rare earth fluorescence has been demonstrated and commercial applications are sure to follow. Broadband refrigeration requires strong Raman scattering and large Raman shift. Also required are spectral management and photonic patterning to offset the unfavorable anti-Stoke’s to Stoke’s shift ratio. Materials such as diamond, silicon, and a number of molecular systems are ideal and have low absorption. Optics splits the broadband spectrum into light and dark bands with width corresponding to the Raman shift. Broadband spectrums where photon flux decreases with increasing photon energy are ideal. By tailoring the incoming spectrum, by utilizing extremely transparent strong Raman shift materials and by photonic inhibition of Stoke’s shifted light the prospect become feasible. The Raman optical cross- section increases with decreasing particle size (until the particle become too small to support the Raman-phonons). Where conservation of phonon states in these truncated Brillioun-zone particles requires an increased density (number/cm<sup>3</sup>) of the allowed-states to compensate for states lost to particle size. Nonetheless, the anti-Stokes to Stokes ratio is approximately one-to-two at laboratory temperature. Thin film deposited diamond is an excellent candidate for refrigeration applications due to its high transparency small grain size and its large Raman magnitude and large shift. Simple one-dimensional photonic structures selectively inhibit the Stoke’s shifted light making refrigeration possible.

  1. 1976 - Introduction to Solid State Physics
  2. 1995 - Laser Electronic
  3. 2001 - Progress in deposited refractive index engineered materials and devices