Ab-initio study of electrical and optical properties of allylamine
At a Glance
Section titled âAt a Glanceâ| Metadata | Details |
|---|---|
| Publication Date | 2018-10-01 |
| Journal | Photonics Letters of Poland |
| Authors | BartĹomiej Dec, Robert Bogdanowicz, Krzysztof Pyrchla |
| Institutions | GdaĹsk University of Technology |
| Citations | 3 |
Abstract
Section titled âAbstractâThe Density functional theory is one of most promising methodology in fast and accurate calculations of electrical and optical properties from the atomic basis. In this paper, we calculate electrical and optical properties of allylamine (2-propen 1- amine) in terms of accuracy and speed of calculations obtained by selection of DFT-1/2 method with ultrasoft Vanderbilt pseudopotentials. Comparison of density of states between molecule and bulk configuration shows great agreement between them, therefore we calculated refractive index which showed even better agreement with experimental data. Full Text: PDF ReferencesW. Kohn and L. J. Sham, âSelf-Consistent Equations Including Exchange and Correlation Effectsâ, Phys. Rev., vol. 140, no. 4A, pp. A1133-A1138, Nov. 1965. CrossRef J. P. Perdew, K. Burke, and M. Ernzerhof, âGeneralized Gradient Approximation Made Simpleâ, Phys. Rev. Lett., vol. 77, no. 18, pp. 3865-3868, Oct. 1996. CrossRef L. G. Ferreira, M. Marques, and L. K. Teles, âApproximation to density functional theory for the calculation of band gaps of semiconductorsâ, Physical Review B, vol. 78, no. 12, Sep. 2008. CrossRef L. G. Ferreira, M. Marques, and L. K. Teles, âSlater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductorsâ, AIP Advances, vol. 1, no. 3, p. 032119, Aug. 2011. CrossRef M. Schlipf and F. Gygi, âOptimization algorithm for the generation of ONCV pseudopotentialsâ, Computer Physics Communications, vol. 196, pp. 36-44, Nov. 2015. CrossRef P. Prayongpan and C. Michael Greenlief, âDensity functional study of ethylamine and allylamine on Si(100)-2Ă1 and Ge(100)-2Ă1 surfacesâ, Surface Science, vol. 603, no. 7, pp. 1055-1069, Apr. 2009. CrossRef M. T. van Os, B. Menges, R. Foerch, G. J. Vancso, and W. Knoll, âCharacterization of Plasma-Polymerized Allylamine Using Waveguide Mode Spectroscopyâ, Chemistry of Materials, vol. 11, no. 11, pp. 3252-3257, Nov. 1999. CrossRef J. Zeng, R.-Q. Zhang, and H. Treutlein, Quantum Simulations of Materials and Biological Systems. Springer Science & Business Media, 2012. CrossRef I. Del Villar, I. R. Matias, and F. J. Arregui, âEnhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materialsâ, Optics Letters, vol. 30, no. 18, p. 2363, Sep. 2005. CrossRef D. Nidzworski et al., âA rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamondâ, Sci Rep, vol. 7, Nov. 2017. CrossRef Synopsys QuantumWise, Atomistix Toolkit version 2018.06 .D. C. Liu and J. Nocedal, âOn the limited memory BFGS method for large scale optimizationâ, Mathematical Programming, vol. 45, no. 1-3, pp. 503-528, Aug. 1989. CrossRef K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, âPseudopotentials for high-throughput DFT calculationsâ, Computational Materials Science, vol. 81, pp. 446-452, Jan. 2014. CrossRef Yu Cai, T. Zhang, A. B. Anderson, J. C. Angus, L. N. Kostadinov, and T. V. Albu, âThe origin of shallow n-type conductivity in boron-doped diamond with H or S co-doping: Density functional theory studyâ, Diamond and Related Materials, vol. 15, no. 11, pp. 1868-1877, Nov. 2006. CrossRef