Skip to content

Electrical Characterization of Metal/Al₂O₃/SiO₂/Oxidized-Si-Terminated (C–Si–O) Diamond Capacitors

MetadataDetails
Publication Date2022-05-27
JournalIEEE Transactions on Electron Devices
AuthorsYu Fu, Shozo Kono, Hiroshi Kawarada, Atsushi Hiraiwa
InstitutionsUniversity of Electronic Science and Technology of China, Waseda University
Citations10

Metal-oxide-semiconductor (MOS) capacitors with oxidized silicon-terminated (C-Si-O) diamond as semiconductors and a stack of SiO <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;2&lt;/sub> and Al <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;2&lt;/sub> O <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;3&lt;/sub> as gate insulators were successfully fabricated and electrically characterized for the first time. C-Si diamond was first formed by the molecular beam deposition of a Si film and subsequent <italic xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;in situ</i> vacuum annealing. The diamond surface turned into C-Si-O when exposed to the air, accompanying a naturally grown SiO <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;2&lt;/sub> film on top. The MOS capacitors exhibited an excellent electrical insulation capability for gate voltages of depletion and accumulation conditions. A dip specific to deep dopants in the substrate was observed for the first time in high-frequency capacitance-voltage ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${C}$ </tex-math></inline-formula> - <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${V}$ </tex-math></inline-formula> ) characteristics of diamond MOS capacitors. In the high-frequency <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${C}$ </tex-math></inline-formula> - <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${V}$ </tex-math></inline-formula> curve, accurate estimation of flat-band voltage was realized by locating it at the observed dip. Additionally, the margin of error of the flat-band voltage estimated using a conventional method of fitting a Mott-Schottky plot to experimental <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${C}$ </tex-math></inline-formula> - <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${V}$ </tex-math></inline-formula> curves was assessed and attributed to the neglect of interface-state charge. The gate insulator stack is found to contain a positive charge of <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$7.8\times10$ </tex-math></inline-formula> <sup xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;11&lt;/sup> cm <sup xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;−2&lt;/sup> in units of the electronic charge, which clearly rules out the presence of 2-D hole gas and supports the normally- OFF operation of reported C-Si-O diamond devices. By using the high-low-frequency method, interface-state density at the Al <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;2&lt;/sub> O <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;3&lt;/sub> /SiO <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;2&lt;/sub> /C-Si-O diamond interface was estimated to be in the range of <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$1.5\times10$ </tex-math></inline-formula> <sup xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;11&lt;/sup> - <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$2\times10$ </tex-math></inline-formula> <sup xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;12&lt;/sup> eV <sup xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;−1&lt;/sup> cm <sup xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;−2&lt;/sup> for interface-state energies of 0.4-0.82 eV above the valence band maximum of the diamond. These results form a basis for applying the silicon-terminated diamond to electronic devices.