Skip to content

Three-Dimensional-Printed Electrochemical Multiwell Plates for Monitoring Food Intolerance from Intestinal Organoids

MetadataDetails
Publication Date2023-02-07
JournalACS Sensors
AuthorsEmily L. Brooks, Khalil K. Hussain, Khushboo Kotecha, Aya Abdalla, Bhavik Anil Patel
InstitutionsUniversity of Brighton
Citations12

Common symptoms of food intolerance are caused by chemical components within food that have a pharmacological activity to alter the motility of the gastrointestinal tract. Food intolerance is difficult to diagnose as it requires a long-term process of eliminating foods that are responsible for gastrointestinal symptoms. Enterochromaffin (EC) cells are key intestinal epithelium cells that respond to luminal chemical stimulants by releasing 5-HT. Changes in 5-HT levels have been shown to directly alter the motility of the intestinal tract. Therefore, a rapid approach for monitoring the impact of chemicals in food components on 5-HT levels can provide a personalized insight into food intolerance and help stratify diets. Within this study, we developed a three-dimensional (3D)-printed electrochemical multiwell plate to determine changes in 5-HT levels from intestinal organoids that were exposed to varying chemical components found in food. The carbon black/poly-lactic acid (CB/PLA) electrodes had a linear range in physiological concentrations of 5-HT (0.1-2 μM) with a limit of detection of 0.07 μM. The electrodes were stable for monitoring 5-HT overflow from intestinal organoids. Using the electrochemical multiwell plate containing intestinal organoids, increases in 5-HT were observed in the presence of 0.1 mM cinnamaldehyde and 10 mM quercetin but reduction in 5-HT levels was observed in 1 mM sorbitol when compared to control. These changes in the presence of chemicals commonly found in food were verified with ex vivo ileum tissue measurements using chromatography and amperometry with boron-doped diamond electrodes. Overall, our 3D electrochemical multiwell plate measurements with intestinal organoids highlight an approach that can be a high-throughput platform technology for rapid screening of food intolerance to provide personalized nutritional diet.