Skip to content

Evaluation of stress in (111) homoepitaxial CVD diamond films by Raman spectrum and nitrogen-vacancy centers

MetadataDetails
Publication Date2024-10-18
JournalApplied Physics Express
AuthorsTakeyuki Tsuji, Chikara Shinei, Takayuki Iwasaki, Masaharu Hatano, Tokuyuki Teraji
Citations3

Abstract The reduction of inhomogeneous stress in diamonds is crucially important for extracting excellent performance of semiconducting diamonds. In this study, to investigate elastic deformation in nitrogen doped (111) diamond films caused by stress, we evaluated the stress in these films using confocal Raman microscopy. The stress was detectable when the misorientation angle ( <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:msub> <mml:mrow> <mml:mi>θ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=“normal”>mis</mml:mi> </mml:mrow> </mml:msub> </mml:math> ) was below 3.7° and it decreased as <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:msub> <mml:mrow> <mml:mi>θ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=“normal”>mis</mml:mi> </mml:mrow> </mml:msub> </mml:math> increased. The Raman spectroscopic measurements, considered together with reported stress measurements by nitrogen-vacancy centers, suggest that the diamond film at low <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:msub> <mml:mrow> <mml:mi>θ</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant=“normal”>mis</mml:mi> </mml:mrow> </mml:msub> </mml:math> was subjected to compressive stresses that were stronger in the [111] direction than [ <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mn>1</mml:mn> <mml:mover accent=“true”> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mo>̅</mml:mo> </mml:mover> <mml:mn>0</mml:mn> </mml:math> ] or [ <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mover accent=“true”> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mo>̅</mml:mo> </mml:mover> <mml:mover accent=“true”> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mo>̅</mml:mo> </mml:mover> <mml:mn>2</mml:mn> </mml:math> ] directions.

  1. 2004 - Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate [Crossref]
  2. 2007 - Optical magnetometry [Crossref]
  3. 2011 - Electric-field sensing using single diamond spins [Crossref]
  4. 2020 - Vector electrometry in a wide-gap-semiconductor device using a spin-ensemble quantum sensor [Crossref]
  5. 2014 - Temperature shifts of the resonances of theNV−center in diamond [Crossref]
  6. 2021 - Simultaneous thermometry and magnetometry using a fiber-coupled quantum diamond sensor [Crossref]
  7. 2023 - Pressure sensor using a hybrid structure of a magnetostrictive layer and nitrogen-vacancy centers in diamond [Crossref]
  8. 2019 - Imaging stress and magnetism at high pressures using a nanoscale quantum sensor [Crossref]
  9. 2008 - High-sensitivity diamond magnetometer with nanoscale resolution [Crossref]
  10. 2016 - Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic [Crossref]