Multifinger Indium Phosphide Double-Heterostructure Transistor Circuit Technology With Integrated Diamond Heat Sink Layer
At a Glance
Section titled “At a Glance”| Metadata | Details |
|---|---|
| Publication Date | 2016-03-31 |
| Journal | IEEE Transactions on Electron Devices |
| Authors | Ksenia Nosaeva, Thualfiqar Al-Sawaf, W. John, D. Stoppel, Matthias Rudolph |
| Institutions | Brandenburg University of Technology Cottbus-Senftenberg, Ferdinand-Braun-Institut |
| Citations | 19 |
Abstract
Section titled “Abstract”The RF power output of scaled subterahertz and terahertz indium phosphide double-heterostructure bipolar transistors (InP DHBTs) is limited by the thermal device resistance, which increases with the geometrical frequency scaling of these devices. We present a diamond thin-film heat sink process aimed at the efficient removal of the heat generated in submicrometer InP HBTs. The thin-film diamond is integrated in a wafer bond process. Vertical connections are facilitated by plasma-processed contact holes through the diamond layer, metallized with electroplated gold. The process is suitable for monolithic circuit integration, amenable to the realization of high-power analog circuits in the millimeter-wave region and beyond. The thermal resistance of double-finger transistors with a 0.8- <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$\mu \text{m}$ </tex-math></inline-formula> emitter width could be reduced to 0.7 K/mW, while reaching the gain cutoff frequencies of <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$f_{T}=360$ </tex-math></inline-formula> GHz and <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$f_{\mathrm {max}}=350$ </tex-math></inline-formula> GHz. An integrated two-stage power amplifier with four-way power combining fabricated in this technology exhibited 20-dBm power output at 90 GHz with a bandwidth of 10 GHz.