Skip to content

Isotope Engineering and Lattice Disorder in Group IV Nanoscale and Quantum Semiconductors

MetadataDetails
Publication Date2017-07-01
JournalPolyPublie (École Polytechnique de MontrĂ©al)
AuthorsSamik Mukherjee

RÉSUMÉ: L’ingĂ©nierie des isotopes stables est la manipulation artificielle de la composition et de la distribution des isotopes stables d’un Ă©lĂ©ment dans la maille cristalline d’un matĂ©riau donnĂ©. Au cours des deux derniĂšres dĂ©cennies, de nombreuses Ă©tudes conduites sur des semi-conducteurs monocristallins ont montrĂ© que de telles modifications peuvent altĂ©rer considĂ©rablement leurs propriĂ©tĂ©s fondamentales comme les propriĂ©tĂ©s nuclĂ©aires, le comportement des phonons, le diagramme des bandes d’énergie et le paramĂštre de maille. Ces dĂ©veloppements ont permis un nouvel Ă©lan d’innovation et d’applications potentielles exploitant l’ingĂ©nierie isotopique dans le transport thermique et thermoĂ©lectrique, dans l’optoĂ©lectronique, et dans le traitement quantique de l’information, parmi tant d’autres. L’essentiel de la littĂ©rature relative Ă  l’ingĂ©nierie des isotopes Ă  l’échelle quantique ou nanoscopique se concentre principalement sur des investigations thĂ©oriques. A ce jour, les Ă©tudes expĂ©rimentales demeurent absentes malgrĂ© leur importance dans l’élucidation d’un vaste Ă©ventail de phĂ©nomĂšnes quantiques et nanoscopiques. Dans cette thĂšse, nous explorons ce paradigme mĂ©connu en concentrant nos expĂ©rimentations sur les propriĂ©tĂ©s de base des structures dont la composition isotopique est contrĂŽlĂ©e Ă  l’échelle nanoscopique. Des nanofils isotopiquement pures de 29Si ou d’alliage isotopique 28Six30Si1-x ont Ă©tĂ© synthĂ©tisĂ©s Ă  l’aide de la mĂ©thode vapeur-liquide-solide et leurs propriĂ©tĂ©s de transport des phonons ont Ă©tĂ© Ă©tudiĂ©es en utilisant la nanothermomĂ©trie Raman. La composition et la distribution isotopiques des nanofils individuels ont Ă©tĂ© dĂ©terminĂ©es Ă  l’aide de la sonde atomique tomographique assistĂ©e par laser. Cependant, avant que la sonde atomique tomographique ne soit appliquĂ©e pour imager les isotopes dans un nanofil, l’utilisation de cette technique unique, mais nĂ©anmoins extrĂȘmement dĂ©licate, a Ă©tĂ© d’abord optimisĂ©e grĂące Ă  deux systĂšmes additionnels. Le premier systĂšme de matĂ©riaux consiste en un super rĂ©seau isotopique de diamant, et le deuxiĂšme est une sĂ©rie d’alliages ternaires mĂ©tastables de silicium-germanium-Ă©tain. Ces recherches nous ont permis non seulement de dĂ©velopper nos connaissances et notre maĂźtrise de la sonde atomique tomographique, mais Ă©galement de faire des nouvelles dĂ©couvertes intĂ©ressantes. En exploitant l’imagerie tridimensionnelle atomique d’alliages ternaires mĂ©tastables, nous avons obtenu des preuves solides que ces alliages sont parfaitement monocristallins et croissent sans agrĂ©gats d’étain mĂȘme pour des concentrations supĂ©rieures Ă  la composition attendue de vii l’équilibre thermodynamique. ABSTRACT: Stable isotope engineering refers to the artificial manipulation of the content and distribution of the stable isotopes of an element within the lattice of a material. Over the last two decades, numerous studies conducted on bulk semiconductors have shown that exercising such a control can significantly alter the fundamental behavior of a material such as the nuclear properties, phonon behavior, electronic energy gaps, and lattice constant. Consequently, a myriad of opportunities emerged from this isotopic engineering of semiconductors enabling a variety of novel and potential applications such as thermal transport and thermoelectric, optoelectronics, and quantum information processing, to name a few. The body of literature related to isotope engineering in nanoscale materials is made primarily of theoretical investigations. Till date, the experimental investigations remain conspicuously missing, despite the fact that the combination of mass-related effects and size-related effects can provide a rich playground to uncover and harness a wide range of new nanoscale and quantum phenomena. In this thesis, we unfold this unexplored paradigm by focusing our experimental investigations on the basic lattice properties of isotopically programmed nanoscale structures. The isotopically pure Si 29 and mixed Six 28Si1−x 30 nanowires were synthesized using the metal catalysed vapor-liquid-solid method and the phonon transport in these nanowires was studied using Raman nanothermometry. The isotopic composition and distribution within an individual nanowire was investigated using laser-assisted atom probe tomography. However, before the atom probe tomography could be implemented to map the isotopes within a nanowire, the experimental capabilities of this unique yet extremely challenging technique were first optimized in two additional systems. The first material system consists of diamond isotopic superlattice and the second, a set of ternary metastable silicon-germanium-tin alloys. These investigations not only equipped us with the science and the practice of atom probe tomography, but also had some interesting revelations of their own. Based on the atom-by-atom three-dimensional mapping of ternary metastable alloys, we obtained clear evidence that these alloys grew without any tin clustering even at contents larger than the equilibrium composition. However, with the increase in tin content, the silicon distribution within these alloys was found to deviate from the ideal theoretical distribution. The root cause of this short-range atomic ordering is the presence of a repulsive interaction between silicon and tin x atoms.