Potential thermoelectric material open framework Si24 from a first-principles study
At a Glance
Section titled āAt a Glanceā| Metadata | Details |
|---|---|
| Publication Date | 2017-08-09 |
| Journal | Journal of Physics D Applied Physics |
| Authors | Tao Ouyang, Pei Zhang, Huaping Xiao, Chao Tang, Jin Li |
| Institutions | Xiangtan University |
| Citations | 20 |
Abstract
Section titled āAbstractāOpen framework Si24 is a new synthesis cage-like silicon allotrope with a quasi-direct bandgap and predicted to exhibit outstanding adsorption efficiency, foreshowing the potential applications in the photovoltaic community. In this paper, the thermoelectric property of such new Si structures is investigated by combining first-principles calculation and semiclassical Boltzmann transport theory. The calculations show that the Si24 possesses a superb Seebeck coefficient, and obviously anisotropic electronic conductivity. Owing to more energy extremums existing in the conduction band region, the power factor of Si24 in the n-type doping is always better than that in p-type samples. Anisotropic phonon transport property is observed as well in Si24 with average lattice thermal conductivity of 45.35 W mā1 Kā1 at room temperature. Based on the electron relaxation time estimated from the experiment, the thermoelectric figure of merit of Si24 is found to be as high as 0.69 (n-type doping at 700 K) and 0.51 (p-type doping at 700 K) along the xx crystal direction, which is about two orders of magnitude larger than that of diamond Si (d-Si). The findings presented in this work shed light on the thermoelectric performance of Si24 and qualify that such new Si allotrope is a promising platform for achieving the recombination of photovoltaic and thermoelectric technologies together.