Skip to content

Diamond RF Transistor Technology with ft=41 GHz and fmax=44 GHz

MetadataDetails
Publication Date2018-06-01
AuthorsTony Ivanov, James Weil, Pankaj B. Shah, A. Glen Birdwell, Khamsouk Kingkeo
InstitutionsDEVCOM Army Research Laboratory
Citations21

Initial results for diamond RF transistor technology are presented. Field Effect Transistors (FETs) were fabricated with gate lengths (L <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;g&lt;/sub> ) ranging from 4μm to 50nm. The FETs have total gate width (W <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;g&lt;/sub> ) of 40 or 120μm. L <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;g&lt;/sub> =100 nm devices show DC drain current I <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;D&lt;/sub> =600 mA/mm (V <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;GS&lt;/sub> =-3V, V <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;DS&lt;/sub> =-10V) with transconductance g <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;m&lt;/sub> =140mS/mm (V <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;GS&lt;/sub> =-0.3V, V <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;DS&lt;/sub> =-4V). Small signal S-parameters were measured to evaluate the high-frequency performance of the diamond FETs. Extrinsic f <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;t&lt;/sub> and f <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;max&lt;/sub> were measured to be 41GHz and 44GHz, respectively. Load pull measurements were used to characterize the devices under large signal excitation. The L <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;g&lt;/sub> =200nm, W <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;g&lt;/sub> =40μm device, tested at 2GHz, shows peak efficiency of 30.5% at V <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;DS&lt;/sub> =-5V. Both peak gain of 19.5dB and peak output power density of 0.66W/mm were achieved at V <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;DS&lt;/sub> =30V. Biasing the device at V <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;DS&lt;/sub> =-15V provides a trade off point for the large signal parameters - gain of ~15dB, efficiency of ~20%, and output power of ~0.5W/mm.

  1. 2014 - C-H surface diamond field effect transistors for high temperature (400&#x00B0;C) and high voltage (500 V) operation [Crossref]
  2. 2005 - 2W/mm output power density at 1 GHz for diamond FETs