Skip to content

The Impact of Substrates on the Performance of Top-Gate p-Ga203 Field-Effect Transistors - Record High Drain Current of 980 mA/mm on Diamond

MetadataDetails
Publication Date2018-06-01
AuthorsJinhyun Noh, Mengwei Si, Hong Zhou, Marko J. Tadjer, Peide D. Ye
InstitutionsUnited States Naval Research Laboratory
Citations16

For high power devices, monolithic <tex xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;&#36;\beta&#36;&lt;/tex> -Ga203 has been identified as an emerging ultra-wide bandgap semiconductor material because it has a large bandgap of 4.8 eV and a high breakdown electric field of 8 MV/cm [1]. <tex xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;&#36;\beta&#36;&lt;/tex> -Ga203 has also the potential to realize low-cost large-size native bulk substrates by melt-grown methods [2], [3]. However, the output power density and the maximum drain current density of <tex xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;&#36;\beta&#36;&lt;/tex> -Ga203 devices can be seriously limited due to its low thermal conductivity <tex xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;&#36;(\kappa&#36;&lt;/tex> of 10-25 W/m·K and self-heating effect (SHE) [4], [5]. If the heat from the channel cannot be well dissipated through the substrate, SHE can lead to significant channel temperature increase, thus degrade the device performance and the long-term reliability [6]. In order to overcome this material constraint, we explored nano-membrane transferring technique and studied <tex xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;&#36;\beta&#36;&lt;/tex> -Ga203 nano-membrane field-effect transistors (FETs) on different foreign substrates such as sapphire <tex xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;&#36;(\kappa=40\ \mathrm{W}/\mathrm{m}\cdot \mathrm{K})$</tex> and Si0 <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;2&lt;/inf> /Si <tex xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;&#36;(\kappa=1.5\ \mathrm{W}/\mathrm{m}\cdot \text{K for}\ 270\ \text{nm SiO}_{2})$</tex> and compared the impact of these substrates on the device performance [7]-[9]. In this work, furthermore, we demonstrate the first B-Ga203 Fet on a diamond substrate with an extremely high thermal conductivity of <tex xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;&#36;1,000\sim 2,200\ \mathrm{W}/\mathrm{m}\cdot \mathrm{K}$</tex> [10] and compare with devices on a sapphire or Si0 <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;2&lt;/inf> /Si substrate.