Skip to content

Effect of Surface Oxygen on the Wettability and Electrochemical Properties of Boron-Doped Nanocrystalline Diamond Electrodes in Room-Temperature Ionic Liquids

MetadataDetails
Publication Date2020-04-29
JournalLangmuir
AuthorsKirti Bhardwaj, Fatemehsadat Parvis, Yufeng Wang, G. J. Blanchard, Greg M. Swain
InstitutionsMichigan State University
Citations14

This paper reports on how the surface chemistry of boron-doped nanocrystalline diamond (BDD) thin-film electrodes (H vs O) affects the wettability and electrochemical properties in two room-temperature ionic liquids (RTILs): [BMIM][PF<sub>6</sub>] and [HMIM][PF<sub>6</sub>]. Comparative measurements were made in 0.5 mol L<sup>-1</sup> H<sub>2</sub>SO<sub>4</sub>. The BDD electrodes were modified by microwave or radio-frequency (RF) plasma treatment in H<sub>2</sub> (H-BDD), Ar (Ar-BDD), or O<sub>2</sub> (O-BDD). These modifications produced low-, medium-, and high-oxygen surface coverages. Atomic O/C ratios, as determined by X-ray photoelectron spectroscopy (XPS), were 0.01 for H-BDD, 0.08 for Ar-BDD, and 0.17 for O-BDD. The static contact angle of ultrapure water on the modified electrodes decreased from 110° (H-BDD) to 41° (O-BDD) with increasing surface oxygen coverage, as expected as the surface becomes more hydrophilic. Interestingly, the opposite trend was seen for both RTILs as the contact angle increased from 20° (H-BDD) to 50° (O-BDD) with increasing surface oxygen coverage. The cyclic voltammetric background current and potential-dependent capacitance in both RTILs were largest for BDD electrodes with the lowest O/C ratio (H-BDD) and smallest contact angle. Slightly larger voltammetric background currents and capacitance were observed in [HMIM][PF<sub>6</sub>] than in [BMIM][PF<sub>6</sub>]. Capacitance values ranged from 8 to 16 μF cm<sup>-2</sup> over the potential range for H-BDD and from 4 to 6 μF cm<sup>-2</sup> for O-BDD. The opposite trend was observed in H<sub>2</sub>SO<sub>4</sub> as the voltammetric background current and capacitance were largest for BDD electrodes with the highest O/C ratio (O-BDD) and smallest contact angle. In summary, reducing the surface oxygen on BDD electrodes increases the wettability to two RTILs and this increases the voltammetric background current and capacitance.

  1. 2004 - Electroanalytical Chemistry