Skip to content

New Thallium Tellurides with Rare Earth Elements

MetadataDetails
Publication Date2020-12-15
JournalКонденсированные среды и межфазные границы
AuthorsS. Z. Imamaliyeva
InstitutionsAzerbaijan National Academy of Sciences
Citations1
AnalysisFull AI Review Included

The research details the successful synthesis and characterization of a new class of ternary thallium rare earth element (REE) tellurides (Tl4LnTe3, where Ln = Nd, Sm, Tb, Er, Tm), offering potential for advanced functional materials.

  • New Compounds: Five novel compounds (Tl4NdTe3, Tl4SmTe3, Tl4TbTe3, Tl4ErTe3, Tl4TmTe3) were synthesized using a specialized ceramic method.
  • Structural Analogy: All new compounds are confirmed to be structural analogues of Tl5Te3, crystallizing in the tetragonal lattice (Space Group I4/mcm).
  • Thermal Behavior: Differential Thermal Analysis (DTA) confirmed that these compounds melt incongruently via peritectic decomposition reactions, with melting points ranging narrowly from 760 K to 775 K.
  • Lattice Distortion: Substitution of Tl atoms by REE cations leads to significant lattice changes: a sharp decrease in the ‘a’ parameter and an increase in the ‘c’ parameter, attributed to strengthened REE-Te chemical bonds.
  • Lanthanide Contraction: A clear, almost linear decrease in both ‘a’ and ‘c’ lattice parameters was observed across the series from Neodymium (Nd) to Thulium (Tm), correlating directly with the decreasing crystallographic radius of the lanthanides.
  • Material Potential: These materials are identified as promising candidates for next-generation thermoelectric and magnetic applications, complementing the existing class of Tl5Te3 analogues known for low thermal conductivity.
ParameterValueUnitContext
Crystal SystemTetragonalN/ATl5Te3 structure type
Space GroupI4/mcmN/ADetermined by XRD indexing
Tl4NdTe3 Lattice Parameter (a)8.8885(7)AngstromCalculated via Le Bail refinement
Tl4NdTe3 Lattice Parameter (c)13.0952(12)AngstromCalculated via Le Bail refinement
Tl4TmTe3 Lattice Parameter (a)8.8354(7)AngstromSmallest ‘a’ parameter observed
Tl4TmTe3 Lattice Parameter (c)13.015(15)AngstromSmallest ‘c’ parameter observed
Melting Point Range760 - 775KEndothermic effect observed by DTA
Tl4NdTe3 Melting Point775KHighest decomposition temperature
Tl4ErTe3 / Tl4TmTe3 Melting Point760KLowest decomposition temperature
Synthesis Pressure10-2PaVacuum level during fusion
XRD Angle Range (2θ)10 - 70DegreesUsed CuK-alpha radiation

The Tl4LnTe3 compounds were synthesized using a specialized ceramic method involving high-purity precursors and extensive annealing, followed by comprehensive thermal and structural characterization.

  1. Precursor Preparation: High-purity elemental Thallium (Tl), Tellurium (Te), and Rare Earth Elements (REE: Nd, Sm, Tb, Er, Tm) were used. Tl was dried immediately before use due to its toxicity and high reactivity with air.
  2. Ampoule Graphitization: Quartz ampoules were graphitized (using thermal decomposition of toluene) to prevent chemical interaction between the highly reactive lanthanides and the inner quartz walls.
  3. Fusion: Stoichiometric amounts of Tl2Te, the specific lanthanide, and Te were loaded into the graphitized ampoules, evacuated to 10-2 Pa, and sealed. Fusion was performed at 1000 K.
  4. Homogenization and Annealing: The resulting cast, non-homogenized ingots were ground into powder, thoroughly mixed, pressed into cylindrical tablets, and subjected to prolonged annealing at 700 K for 1000 hours to achieve equilibrium and single-phase purity.
  5. Differential Thermal Analysis (DTA): Heating curves were recorded using a DSC NETZSCH 404 F1 Pegasus system and an electronic TC-08 Thermocouple Data Logger, covering the temperature range from room temperature up to approximately 1300 K.
  6. X-ray Phase Analysis (XRD): Powder diffraction patterns were recorded using a D2 Phaser diffractometer with CuK-alpha radiation (2θ range: 10° to 70°).
  7. Structural Refinement: Crystal lattice parameters were determined by indexing the powder diffraction patterns using the Topas 4.2 software via the Le Bail refinement method.

The unique structural properties and confirmed thermoelectric potential of the Tl4LnTe3 compounds position them for use in several high-tech engineering sectors, particularly those requiring efficient energy conversion and advanced magnetic functionality.

  • Thermoelectric Generators (TEGs): The Tl5Te3 structural class is known for anomalously low thermal conductivity, a key requirement for high thermoelectric figure-of-merit (ZT). These new analogues are candidates for efficient TEGs used in waste heat recovery systems.
  • Advanced Magnetic Devices: The incorporation of magnetic REE (Tb, Er, Tm) suggests potential applications in specialized magnetic components, sensors, or data storage devices.
  • Spintronics and Quantum Computing: The research is directly linked to the development of “Advanced Materials for Spintronics and Quantum Computing,” indicating potential use in spin-based electronics or low-dissipation quantum hardware.
  • Low-Dissipation Electronics: Related Tl-chalcogenides are often studied as topological insulators, suggesting these new compounds could be explored for use in electronic devices where minimizing energy loss is critical.
View Original Abstract

Compounds of the Tl4LnTe3 (Ln-Nd, Sm, Tb, Er, Tm) composition were synthesized by the direct interaction of stoichiometric amounts of thallium telluride Tl2Te elementary rare earth elements (REE) and tellurium in evacuated (10-2 Pa) quartz ampoules. The samples obtained were identified by differential thermal and X-ray phase analyses. Based on the data from the heating thermograms, it was shown that these compounds melt with decomposition by peritectic reactions. Analysis of powder diffraction patterns showed that they were completely indexed in a tetragonal lattice of the Tl5Te3 type (space group I4/mcm). Using the Le Bail refinement, the crystal lattice parameters of the synthesized compounds were calculated.It was found that when the thallium atoms located in the centres of the octahedra were substituted by REE atoms, there occurred a sharp decrease in the а parameter and an increase in the с parameter. This was due to the fact that the substitution of thallium atoms with REE cations led to the strengthening of chemical bonds with tellurium atoms. This was accompanied by some distortion of octahedra and an increase in the с parameter. A correlation between the parameters of the crystal lattices and the atomic number of the lanthanide was revealed: during the transition from neodymium to thulium, therewas an almost linear decrease in both parameters of the crystal lattice, which was apparently associated with lanthanide contraction. The obtained new compounds complement the extensive class of ternary compounds - structural analogues of Tl5Te3 and are of interest as potential thermoelectric and magnetic materials.
 
 
 
 References1. Berger L. I., Prochukhan V. D. Troinye almazopodobnyepoluprovodniki [Ternary diamond-like semiconductors].Moscow: Metallurgiya; 1968. 151 p. (In Russ.)2. Villars P, Prince A. Okamoto H. Handbook ofternary alloy phase diagrams (10 volume set). MaterialsPark, OH: ASM International; 1995. 15000 p.3. Tomashyk V. N. Multinary Alloys Based on III-VSemiconductors. CRC Press; 2018. 262 p. DOI: https://doi.org/10.1201/97804290553484. Babanly M. B., Chulkov E. V., Aliev Z. S. et al. Phasediagrams in materials science of topological insulatorsbased on metal chalkogenides. Russian Journal ofInorganic Chemistry. 2017;62(13): 1703-1729. DOI:https://doi.org/10.1134/S00360236171300345. Imamaliyeva S. Z., Babanly D. M., Tagiev D. B.,Babanly M. B. Physicochemical aspects of developmentof multicomponent chalcogenide phases having theTl5Te3 structure. A Review. Russian Journal of InorganicChemistry. 2018;63(13): 1703-1724 DOI: https://doi.org/10.1134/s00360236181300416. Asadov M. M., Babanly M. B., Kuliev A. A. Phaseequilibria in the system Tl-Te. Izvestiya Akademii NaukSSSR, Neorganicheskie Materialy. 1977;13(8): 1407-1410.7. Okamoto H. Te-Tl (Tellurium-Thallium). Journalof Phase Equilibria. 2001;21(5): 501. DOI: https://doi.org/10.1361/1054971007703398338. Schewe I., Böttcher P., Schnering H. G. The crystalstructure of Tl5Te3 and its relationship to the Cr5B3.Zeitschrift für Kristallographie. 1989;188(3-4): 287-298.DOI: https://doi.org/10.1524/zkri.1989.188.3-4.2879. Böttcher P., Doert Th., Druska Ch., Brandmöller S.Investigation on compounds with Cr5B3 and In5Bi3structure types. Journal of Alloys and Compounds.1997;246(1-2): 209-215. DOI: https://doi.org/10.1016/S0925-8388(96)02455-310. Imamalieva S. Z., Sadygov F. M., Babanly M. B.New thallium neodymium tellurides. InorganicMaterials. 2008;44(9): 935-938. DOI: https://doi. org/10.1134/s002016850809007011. Babanly M. B., Imamalieva S. Z., Babanly D. М.,Sadygov F. M. Tl9LnTe6 (Ln-Ce, Sm, Gd) novel structuralTl5Te3 analogues. Azerbaijan Chemical Journal. 2009(1):122-125. (In Russ., abstract in Eng.)12. Imamaliyeva S. Z., Tl4GdTe3 and Tl4DyTe3 -novel structural Tl5Te3 analogues. Physics andChemistry of Solid State. 2020;21(3): 492-495. DOI:https://doi.org/10.15330/pcss.21.3.492-49513. Wacker K. Die kristalstrukturen von Tl9SbSe6und Tl9SbTe6. Z. Kristallogr. Supple. 1991;3: 281.14. Doert T., Böttcher P. Crystal structure ofbismuthnonathalliumhexatelluride BiTl9Te6. Zeitschrift für Kristallographie - Crystalline Materials. 1994;209(1):95. DOI: https://doi.org/10.1524/zkri.1994.209.1.9515. Bradtmöller S., Böttcher P. Darstellung undkristallostructur von SnTl4Te3 und PbTl4Te3. Zeitschriftfor anorganische und allgemeine Chemie. 1993;619(7):1155-1160. DOI: https://doi.org/10.1002/zaac.1993619070216. Voroshilov Yu. V., Gurzan M. I., Kish Z. Z.,Lada L. V. Fazovye ravnovesiya v sisteme Tl-Pb-Te ikristallicheskaya struktura soedinenii tipa Tl4BIVX3 iTl9BVX6 [Phase equilibria in the Tl-Pb-Te system andthe crystal structure of Tl4BIVX3 and Tl9BVX6 compounds].Izvestiya Akademii nauk SSSR. Neorganicheskiematerialy. 1988;24: 1479-1484. (In Russ.)17. Bradtmöller S., Böttcher P. Crystal structure ofcopper tetrathallium tritelluride, CuTl4Te3. CuTl4Te3.Zeitschrift für Kristallographie - Crystalline Materials.1994;209(1): 97. DOI: https://doi.org/10.1524/zkri.1994.209.1.9718. Bradtmöller S., Böttcher P. Crystal structure ofmolybdenum tetrathallium tritelluride, MoTl4Te3.Zeitschrift für Kristallographie - Crystalline Materials.1994;209(1): 75. DOI: https://doi.org/10.1524/zkri.1994.209.1.7519. Babanly M. B., Imamalieva S. Z., Sadygov F. M.New thallium tellurides with indium and aurum.Chemical Problems (Kimya Problemlәri). 2009; 171-174.(In Russ., abstract in Eng.)20. Guo Q., Chan M., Kuropatwa B. A., Kleinke H.Enhanced thermoelectric properties of variants ofTl9SbTe6 and Tl9BiTe6. Chemistry of Materials.2013;25(20): 4097-4104. DOI: https://doi.org/10.1021/cm402593f21. Guo Q., Assoud A., Kleinke H. Improved bulkmaterials with thermoelectric figure-of-merit greaterthan 1: Tl10-xSnxTe6 and Tl10-xPbxTe6. Advanced EnergyMaterials. 2014;4(14): 1400348-8. DOI: https://doi.org/10.1002/aenm.20140034822. Bangarigadu-Sanasy S., Sankar C. R., SchlenderP., Kleinke H. Thermoelectric properties of Tl10-xLnxTe6, with Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Hoand Er, and 0.25<x<1.32. Journal of Alloys andCompounds. 2013;549: 126-134. DOI: https://doi.org/10.1016/j.jallcom.2012.09.02323. Shi Y., Sturm C., Kleinke H. Chalcogenides asthermoelectric materials. Journal of Solid StateChemistry. 2019; 270: 273-279. DOI: https://doi.org/10.1016/j.jssc.2018.10.04924. Piasecki M., Brik M. G., Barchiy I. E., Ozga K.,Kityk I. V., El-Naggar A. M., Albassam A. A.,Malakhovskaya T. A., Lakshminarayana G. Bandstructure, electronic and optical features of Tl4SnX3(X= S, Te) ternary compounds for optoelectronicapplications. Journal of Alloys and Compounds.2017;710: 600-607. DOI: https://doi.org/10.1016/j.jallcom.2017.03.28025. Reshak A. H., Alahmed Z. A., Barchij I. E.,Sabov M. Yu., Plucinski K. J., Kityk I. V., Fedorchuk A. O.The influence of replacing Se by Te on electronicstructure and optical properties of Tl4PbX3 (X = Se orTe): experimental and theoretical investigations. RSCAdvances. 2015;5(124): 102173-102181. DOI: https://doi.org/10.1039/C5RA20956K26. Malakhovskay-Rosokha T. A., Filep M. J.,Sabov M. Y., Barchiy I. E., Fedorchuk A. O. Plucinski K. J.IR operation by third harmonic generation of Tl4PbTe3and Tl4SnS3 single crystals. Journal of Materials Science:Materials in Electronics. 2013;24(7): 2410-2413. DOI:https://doi.org/10.1007/s10854-013-1110-927. Isaeva A., Schoenemann R., Doert T. Syntheses,crystal structure and magnetic properties of Tl9RETe6(RE = Ce, Sm, Gd). Crystals. 2020;10(4): 277-11. DOI:https://doi.org/10.3390/cryst1004027728. Bangarigadu-Sanasy S., Sankar C. R., Dube P. A.,Greedan J. E., Kleinke H. Magnetic properties ofTl9LnTe6, Ln = Ce, Pr, Tb and Sm. Journal of Alloys andCompounds. 2014;589: 389-392. DOI: https://doi.org/10.1016/j.jallcom.2013.11.22929. Arpino K. E., Wasser B. D., and McQueen T. M.Superconducting dome and crossover to an insulatingstate in [Tl4]Tl1-xSnxTe3. APL Materials. 2015;3(4):041507. DOI: https://doi.org/10.1063/1.491339230. Arpino K. E., Wallace D. C., Nie Y. F., Birol T.,King P. D. C., Chatterjee S., Uchida M., Koohpayeh S.M., Wen J.-J., Page K., Fennie C. J., Shen K. M.,McQueen T. M. Evidence for topologically protectedsurface states and a superconducting phase in Tl4Te3 using photoemission, specific heat, andmagnetization measurements, and density functionaltheory. Physical Review Letters. 2014;112(1): 017002-5.DOI: https://doi.org/10.1103/physrevlett.112.01700231. Niu C., Dai Y., Huang B. et al. Natural threedimensionaltopological insulators in Tl4PbTe3 andTl4SnTe3. Frühjahrstagung der Deutschen PhysikalischenGesellschaft. Dresden, Germany, 30 Mar 2014 - 4 Apr2014.32. Imamalieva S. Z. Phase diagrams in thedevelopment of thallium-REE tellurides with Tl5Te3structure and multicomponent phases based on them.Overview. Kondensirovannye sredy i mezhfaznye granitsy =Condensed Matter and Interphases. 2018;20(3): 332-347.DOI: https://doi.org/10.17308/kcmf.2018.20/57033. Jia Y.Q. Crystal radii and effective ionic radii ofthe rare earth ions. Journal of Solid State Chemistry.1991; 95(1): 184-187. DOI: https://doi.org/10.1016/0022-4596(91)90388-X