Transient Thermal and Electrical Co-Optimization of BEOL Top-Gated ALD In₂O₃ FETs on Various Thermally Conductive Substrates Including Diamond
At a Glance
Section titled “At a Glance”| Metadata | Details |
|---|---|
| Publication Date | 2022-12-03 |
| Journal | 2022 International Electron Devices Meeting (IEDM) |
| Authors | Pai-Ying Liao, Sami Alajlouni, Z. Zhang, Zehao Lin, Mengwei Si |
| Institutions | United States Naval Research Laboratory, Purdue University West Lafayette |
| Citations | 11 |
Abstract
Section titled “Abstract”In this work, we co-optimize the transient thermal and electrical characteristics of top-gated (TG), ultrathin, atomic-layer-deposited (ALD), back-end-of-line (BEOL) compatible indium oxide (In <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>2</inf> O <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>3</inf> ) transistors on various thermally conductive substrates by visualization of the self-heating effect (SHE) utilizing an ultrafast high-resolution (HR) thermo-reflectance (TR) imaging system and overcome the thermal challenges through substrate thermal management and short-pulse measurement. At the steady-state, the temperature increase $(\Delta \mathrm{T})$ of the devices on highly resistive silicon (HR Si) and diamond substrates are roughly 6 and 13 times lower than that on SiO ${2} /$Si substrate, due to the higher thermal conductivities $(\kappa) $ of HR Si and diamond. Consequently, ultrahigh drain current (I <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>D</inf> ) of 3.7 mA$/ \mu \mathrm{m}$ at drain voltage (V <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>DS</inf> ) of 1.4 V with direct current (DC) measurement is achieved with TG ALD In <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>2</inf> O <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>3</inf> FETs on diamond substrate. Furthermore, transient thermal study shows that it takes roughly 350 and 300 ns for the devices to heat-up and cool-down to the steady-states, being independent on the substrate. The extracted time constants of heat-up $(\tau{h})$ and cool-down $(\tau_{c})$ processes are 137 and 109 ns, respectively. By employing electrical short-pulse measurement with pulse width (t <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>pulse</inf> ) shorter than $\tau_{h}$, the SHE can be significantly reduced. Accordingly, a higher I <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>D</inf> of 4.3 mA$/ \mu \mathrm{m}$ is realized with a 1.9nm-thick In <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>2</inf> O <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>3</inf> FET on HR Si substrate after co-optimization.
Tech Support
Section titled “Tech Support”Original Source
Section titled “Original Source”References
Section titled “References”- 2006 - Jpn. J. Appl. Phys.
- 2021 - Nano Lett.
- 2021 - IEEE EDL
- 2021 - IEEE TED
- 2021 - Appl. Phys. Lett.
- 2022 - Nat. Electron.
- 2021 - IEEE TED
- 2022 - VLSIT
- 2020 - VLSIT
- 2020 - VLSIT