Skip to content

Transient Thermal and Electrical Co-Optimization of BEOL Top-Gated ALD In₂O₃ FETs on Various Thermally Conductive Substrates Including Diamond

MetadataDetails
Publication Date2022-12-03
Journal2022 International Electron Devices Meeting (IEDM)
AuthorsPai-Ying Liao, Sami Alajlouni, Z. Zhang, Zehao Lin, Mengwei Si
InstitutionsUnited States Naval Research Laboratory, Purdue University West Lafayette
Citations11

In this work, we co-optimize the transient thermal and electrical characteristics of top-gated (TG), ultrathin, atomic-layer-deposited (ALD), back-end-of-line (BEOL) compatible indium oxide (In <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;2&lt;/inf> O <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;3&lt;/inf> ) transistors on various thermally conductive substrates by visualization of the self-heating effect (SHE) utilizing an ultrafast high-resolution (HR) thermo-reflectance (TR) imaging system and overcome the thermal challenges through substrate thermal management and short-pulse measurement. At the steady-state, the temperature increase $(\Delta \mathrm{T})$ of the devices on highly resistive silicon (HR Si) and diamond substrates are roughly 6 and 13 times lower than that on SiO ${2} /$Si substrate, due to the higher thermal conductivities $(\kappa) $ of HR Si and diamond. Consequently, ultrahigh drain current (I <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;D&lt;/inf> ) of 3.7 mA$/ \mu \mathrm{m}$ at drain voltage (V <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;DS&lt;/inf> ) of 1.4 V with direct current (DC) measurement is achieved with TG ALD In <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;2&lt;/inf> O <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;3&lt;/inf> FETs on diamond substrate. Furthermore, transient thermal study shows that it takes roughly 350 and 300 ns for the devices to heat-up and cool-down to the steady-states, being independent on the substrate. The extracted time constants of heat-up $(\tau{h})$ and cool-down $(\tau_{c})$ processes are 137 and 109 ns, respectively. By employing electrical short-pulse measurement with pulse width (t <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;pulse&lt;/inf> ) shorter than $\tau_{h}$, the SHE can be significantly reduced. Accordingly, a higher I <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;D&lt;/inf> of 4.3 mA$/ \mu \mathrm{m}$ is realized with a 1.9nm-thick In <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;2&lt;/inf> O <inf xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;3&lt;/inf> FET on HR Si substrate after co-optimization.

  1. 2006 - Jpn. J. Appl. Phys.
  2. 2021 - Nano Lett.
  3. 2021 - IEEE EDL
  4. 2021 - IEEE TED
  5. 2021 - Appl. Phys. Lett.
  6. 2022 - Nat. Electron.
  7. 2021 - IEEE TED
  8. 2022 - VLSIT
  9. 2020 - VLSIT
  10. 2020 - VLSIT