Skip to content

Transient Thermal and Electrical Co-Optimization of BEOL Top-Gated ALD In2O3 FETs Toward Monolithic 3-D Integration

MetadataDetails
Publication Date2023-01-16
JournalIEEE Transactions on Electron Devices
AuthorsPai-Ying Liao, Dongqi Zheng, Sami Alajlouni, Zhuocheng Zhang, Mengwei Si
InstitutionsUnited States Naval Research Laboratory, Purdue University West Lafayette
Citations15

In this work, the transient thermal and electrical characteristics of top-gated (TG), ultrathin, atomic-layer-deposited (ALD), back-end-of-line (BEOL) compatible indium oxide (In2O3) transistors on various thermally conductive substrates are co-optimized by visualization of the self-heating effect (SHE) utilizing an ultrafast high-resolution (HR) thermo-reflectance (TR) imaging system and overcome the thermal challenges through substrate thermal management and short-pulse measurement. At the steady-state, the temperature increase ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$\Delta {T}$ </tex-math></inline-formula> ) of the devices on highly resistive silicon (HR Si) and diamond substrates are roughly 6 and 13 times lower than that on a SiO2/Si substrate, due to the much higher thermal conductivities ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$\kappa $ </tex-math></inline-formula> ) of HR Si and diamond. Consequently, the ultrahigh drain current ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${I}{D}$ </tex-math></inline-formula> ) of 3.7 mA/ <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$\mu \text{m}$ </tex-math></inline-formula> at drain voltage ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${V}{\text {DS}}$ </tex-math></inline-formula> ) of 1.4 V with direct current (dc) measurement is achieved with TG ALD In2O3 FETs on a diamond substrate. Furthermore, transient thermal study shows that it takes roughly 350 and 300 ns for the devices to heat-up and cool-down to the steady-states, being independent of the substrate. The extracted thermal time constants of heat-up ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$\tau _{h}$ </tex-math></inline-formula> ) and cool-down ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$\tau {c}$ </tex-math></inline-formula> ) processes are 137 and 109 ns, respectively. By employing electrical short-pulse measurement with a pulsewidth ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${t}{\text {pulse}}$ </tex-math></inline-formula> ) shorter than <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$\tau {h}$ </tex-math></inline-formula> , the SHE can be significantly reduced. Accordingly, a higher <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${I}{D}$ </tex-math></inline-formula> of 4.3 mA/ <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$\mu \text{m}$ </tex-math></inline-formula> is realized with a 1.9-nm-thick In2O3 FET on HR Si substrate after co-optimization. Besides, to integrate BEOL-compatible ALD In2O3 transistors on the front-end-of-line (FEOL) devices with the maintenance of the satisfactory heat dissipation capability, a FEOL-interlayer-BEOL structure is proposed where the interlayer not only electrically isolates the FEOL and BEOL devices but also serves as a thermally conductive layer to alleviate the SHE.