Quantum sensing for earth observation at the European Space Agency - latest developments, challenges, and future prospects
At a Glance
Section titled āAt a Glanceā| Metadata | Details |
|---|---|
| Publication Date | 2023-10-19 |
| Authors | Aaron Strangfeld, Olivier Carraz, Anna Eiden, Arnaud Hélière, Pierluigi Silvestrin |
| Citations | 3 |
Abstract
Section titled āAbstractāQuantum sensing has emerged as a promising approach for spaceborne Earth Observation (EO) with the potential to offer higher accuracy, sensitivity and stability than instruments used in EO missions so far. While several quantum sensors have been developed and successfully tested in ground-based experiments, with some of them even available as commercial devices, the identification of their potential applications in space remains a challenge. Nevertheless, there are some promising technologies, including cold-atom interferometers, Rydberg receivers, atomic vapor- and Nitrogen-Vacancy center-based magnetometers, and quantum lidar, that show potential for enhancing EO capabilities. In this presentation, we will discuss the latest developments and challenges in quantum sensing for EO at the European Space Agency (ESA), highlighting the most promising technologies and their potential applications. We will also discuss ongoing efforts at ESA to identify potential applications of these sensors and the roadmap for their deployment. Finally, we will conclude with a discussion of the future prospects for quantum sensing in EO and the wider space exploration domain.