Dynamical nuclear polarization for dissipation-induced entanglement in NV centers
At a Glance
Section titled âAt a Glanceâ| Metadata | Details |
|---|---|
| Publication Date | 2023-11-13 |
| Journal | Physical review. B./Physical review. B |
| Authors | Shishir Khandelwal, Shashwat Kumar, Nicolas Palazzo, Géraldine Haack, Mayeul Chipaux |
| Institutions | University of Geneva, Ăcole Polytechnique FĂ©dĂ©rale de Lausanne |
Abstract
Section titled âAbstractâWe propose a practical implementation of a two-qubit entanglement engine which denotes a scheme to generate quantum correlations through purely dissipative processes. On a diamond platform, the electron spin transitions of two nitrogen-vacancy (NV) centers play the role of artificial atoms (qubits), interacting through a dipole-dipole Hamiltonian. The surrounding carbon-13 nuclear spins act as spin baths playing the role of thermal reservoirs at well-defined temperatures and exchanging heat through the NV center qubits. In our scheme, a key challenge is therefore to create a temperature gradient between two spin baths, for which we propose to exploit the recent progress in dynamical nuclear polarization, combined with microscopy superresolution methods. We discuss how these techniques should allow us to initialize such a long lasting out-of-equilibrium polarization situation between them, effectively leading to suitable conditions to run the entanglement engine successfully. Within a quantum master equation approach, we make theoretical predictions using state-of-the-art values for experimental parameters. We obtain promising values for the concurrence, reaching theoretical maxima.