NV centres by vacancies trapping in irradiated diamond - experiments and modelling
At a Glance
Section titled “At a Glance”| Metadata | Details |
|---|---|
| Publication Date | 2024-01-01 |
| Journal | New Journal of Physics |
| Authors | S. Santonocito, Andrej Denisenko, Rainer Stöhr, Wolfgang Knolle, M. Schreck |
| Institutions | University of Augsburg, Element Six (United Kingdom) |
| Citations | 4 |
Abstract
Section titled “Abstract”Abstract Advances in applications of nitrogen-vacancy (NV) spin centres in diamond for sensing and quantum metrology depend critically on the NV fabrication methods. One such technique combines epitaxial diamond growth and electron or ion irradiation (He, C, etc), where NVs are activated by vacancy trapping at the nitrogen donor atoms upon thermal diffusion. In this work we study the efficiency of such method by analyzing NV depth profiles created by 340 keV and also 4 keV He irradiation in high purity CVD and HPHT diamond crystals and subjected to sequent annealing at 950 °C and 1200 °C temperatures. This analysis is coupled with the measurement of NV density in the bulk of CVD diamonds with nitrogen doping at low-ppb and low-ppm levels, exposed to MeV electrons in a wide range of the doses. For data analysis we developed an atomistic model based on probabilistic atomic jumps in a crystal lattice, which considers competitive trapping between di- <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:mo stretchy=“false”>(</mml:mo> <mml:msub> <mml:mrow> <mml:mrow> <mml:mtext mathvariant=“italic”>V</mml:mtext> </mml:mrow> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy=“false”>)</mml:mo> </mml:mrow> </mml:math> or multi-vacancy defects compared to that of NVs. The efficiency of NV formation was defined as a ratio of the corresponding capture cross sections: σ NV vs. <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:msub> <mml:mi>σ</mml:mi> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mtext mathvariant=“italic”>V</mml:mtext> </mml:mrow> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:math> . Applying this model to the experimental data, the <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:msub> <mml:mi>σ</mml:mi> <mml:mrow> <mml:mtext>NV</mml:mtext> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>σ</mml:mi> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mtext mathvariant=“italic”>V</mml:mtext> </mml:mrow> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:math> ratio was estimated about 0.1-0.5, where the activation energy of vacancy diffusion of about 1.7 eV was evaluated by 3D localization of individual NVs in depth profiles in a confocal microscope and sampling their spin coherence properties ( <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:msub> <mml:mi mathvariant=“normal”>T</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> ). In addition, we noted two subsidiary effects also discussed here: (i) reduction of NV density within the stopping range of the implanted He atoms after <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:msup> <mml:mn>1200</mml:mn> <mml:mrow> <mml:mo>∘</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> annealing and, (ii) partial suppression of NVs at near-surface areas visible only at low-dose electron exposures. The results of this study could be helpful to optimize the NV fabrication process reducing the density of ‘collateral’ lattice damage.
Tech Support
Section titled “Tech Support”Original Source
Section titled “Original Source”References
Section titled “References”- 2014 - Magnetometry with nitrogen-vacancy defects in diamond [Crossref]
- 2018 - Microwave device characterization using a widefield diamond microscope [Crossref]
- 2017 - Nanoscale nuclear magnetic resonance with chemical resolution [Crossref]
- 2016 - Diamond quantum devices in biology [Crossref]
- 2018 - Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond [Crossref]
- 2022 - Picotesla magnetometry of microwave fields with diamond sensors [Crossref]
- 2017 - Single-spin magnetic resonance in the nitrogen-vacancy center of diamond [Crossref]
- 2014 - Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces [Crossref]
- 2014 - Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample [Crossref]
- 2020 - Benchmark for synthesized diamond sensors based on isotopically engineered nitrogen-vacancy spin ensembles for magnetometry applications [Crossref]