Suppression of thermal diffusion of vacancies across p + -n junction structures in diamond. Application to SnV centers by ion implantation
At a Glance
Section titled “At a Glance”| Metadata | Details |
|---|---|
| Publication Date | 2024-04-29 |
| Journal | New Journal of Physics |
| Authors | S. Santonocito, Andrej Denisenko, M. Schreck, A. Pasquarelli, Jörg Wrachtrup |
Abstract
Section titled “Abstract”Abstract This work reports on defect engineering related to optical centers in diamond by ion implantation. In particular, we demonstrate that thermal diffusion of vacancies to a few micrometers in depth can be effectively suppressed provided these are electrically charged and located within the depletion region of an abrupt <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:mrow> <mml:msup> <mml:mi mathvariant=“normal”>p</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> </mml:math> -n junction. The observed effect is complementary to the observations in the previous study (Favaro et al 2017 Nat. Commun. 8 15409) showing that charging of implantation-induced vacancies at such junction structures in diamond inhibits the formation of vacancy complexes in proximity to the targeted optical centers. In the present work we first generate vacancies near the surface of a low nitrogen doped CVD diamond substrate by He and C ion implantation before these are diffused by annealing at <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:mn>1200</mml:mn> <mml:msup> <mml:mstyle scriptlevel=“0”/> <mml:mrow> <mml:mo>∘</mml:mo> </mml:mrow> </mml:msup> <mml:mrow> <mml:mi mathvariant=“normal”>C</mml:mi> </mml:mrow> </mml:mrow> </mml:math> into the bulk. In the next step the depth distribution of NV centers generated by trapping of these vacancies is analyzed on a micron scale. For precise tuning of the implantation conditions we derived data on the boron and nitrogen doping by step etching of planar <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:mrow> <mml:msup> <mml:mi mathvariant=“normal”>p</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> </mml:math> resistors and <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:mrow> <mml:msup> <mml:mi mathvariant=“normal”>p</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> </mml:math> -n- <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:mrow> <mml:msup> <mml:mi mathvariant=“normal”>p</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> </mml:math> diode structures combined with electrical characterization and modeling. In the next step, tin-vacancy (SnV) centers were produced by 40 keV Sn implantation across the same junction structures at optimized conditions. In this way we observe an enhancement of the SnV yield and noticeable suppression of NV centers by diffusion and trapping of vacancies along the tracks of tin ions. Such ‘subsidiary’ NVs could significantly affect the emission of SnV and potentially other centers in the same spectral range.
Tech Support
Section titled “Tech Support”Original Source
Section titled “Original Source”References
Section titled “References”- 2006 - Processing quantum information in diamond [Crossref]
- 2010 - Quantum register based on coupled electron spins in a room-temperature solid [Crossref]
- 2016 - Diamond quantum devices in biology [Crossref]
- 2016 - Efficient creation of dipolar coupled nitrogen-vacancy spin qubits in diamond [Crossref]
- 2018 - Material platforms for spin-based photonic quantum technologies [Crossref]
- 2018 - Quantum technologies with optically interfaced solid-state spins [Crossref]
- 2019 - Principles and techniques of the quantum diamond microscope [Crossref]
- 2020 - Building blocks for quantum network based on group-IV split-vacancy centers in diamond [Crossref]
- 2015 - Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers [Crossref]
- 2016 - Production of bulk NV centre arrays by shallow implantation and diamond CVD overgrowth [Crossref]