Miniaturized magnetic-field sensor based on nitrogen-vacancy centers
At a Glance
Section titled āAt a Glanceā| Metadata | Details |
|---|---|
| Publication Date | 2025-10-24 |
| Journal | Physical Review Applied |
| Authors | Stefan Johansson, Dennis Lƶnard, Isabel Cardoso Barbosa, Jonas Gutsche, Jonas Witzenrath |
Abstract
Section titled āAbstractāThe nitrogen-vacancy (NV) center in diamond is a prime candidate for quantum sensing technologies. Here, we present a fully integrated and mechanically robust fiber-based endoscopic sensor with a tip diameter of <a:math xmlns:a=āhttp://www.w3.org/1998/Math/MathMLā display=āinlineā> <a:mrow> <a:mn>1.25</a:mn> </a:mrow> <a:mspace width=ā0.1emā/> <a:mi>mm</a:mi> </a:math> . On its tip, a direct laser-writing process is used to secure a diamond containing NV centers above the fiberās core inside a polymer structure. Additionally, a metallic direct laser-written antenna structure next to the fiber facet allows efficient microwave manipulation of NV-center spins. The sensor achieves a shot-noise-limited magnetic-field sensitivity of <d:math xmlns:d=āhttp://www.w3.org/1998/Math/MathMLā display=āinlineā> <d:mrow> <d:mn>5.9</d:mn> </d:mrow> <d:mspace width=ā0.1emā/> <d:mi>nT</d:mi> <d:mo>/</d:mo> <d:msqrt> <d:mi>Hz</d:mi> </d:msqrt> </d:math> using a <g:math xmlns:g=āhttp://www.w3.org/1998/Math/MathMLā display=āinlineā> <g:mn>15</g:mn> <g:mstyle displaystyle=āfalseā scriptlevel=ā0ā> <g:mtext>ā</g:mtext> </g:mstyle> <g:mtext fontfamily=ātimesā>μ</g:mtext> <g:mrow> <g:mrow> <g:mi mathvariant=ānormalā>m</g:mi> </g:mrow> </g:mrow> </g:math> -sized microdiamond at a microwave power of <m:math xmlns:m=āhttp://www.w3.org/1998/Math/MathMLā display=āinlineā> <m:mn>50</m:mn> <m:mspace width=ā0.1emā/> <m:mi>mW</m:mi> </m:math> and an optical power of <p:math xmlns:p=āhttp://www.w3.org/1998/Math/MathMLā display=āinlineā> <p:mrow> <p:mn>2.15</p:mn> </p:mrow> <p:mspace width=ā0.1emā/> <p:mi>mW</p:mi> </p:math> . Using lock-in techniques, we measure a sensitivity of <s:math xmlns:s=āhttp://www.w3.org/1998/Math/MathMLā display=āinlineā> <s:mrow> <s:mn>51.8</s:mn> </s:mrow> <s:mspace width=ā0.1emā/> <s:mi>nT</s:mi> <s:mo>/</s:mo> <s:msqrt> <s:mi>Hz</s:mi> </s:msqrt> </s:math> . Furthermore, we introduce a dual-fiber concept that enables, in combination with a direct laser-written structure, independent guiding of excitation and fluorescence light and thus reduces background autofluorescence. Moreover, controlled guiding of excitation light to the diamond while avoiding sample illumination may enable operation in light-sensitive environments such as biological tissue. While the demonstrated sensitivity is achieved using a single-fiber configuration, the dual-fiber approach provides a path toward integrating smaller diamonds, where autofluorescence would otherwise limit performance. We demonstrate the capability of vector magnetic-field measurements in the type of magnetic field used in state-of-the-art ultracold quantum gas experiments, opening a potential arena in which high resolution and high sensitivity are required.