Skip to content

Miniaturized magnetic-field sensor based on nitrogen-vacancy centers

MetadataDetails
Publication Date2025-10-24
JournalPhysical Review Applied
AuthorsStefan Johansson, Dennis Lƶnard, Isabel Cardoso Barbosa, Jonas Gutsche, Jonas Witzenrath

The nitrogen-vacancy (NV) center in diamond is a prime candidate for quantum sensing technologies. Here, we present a fully integrated and mechanically robust fiber-based endoscopic sensor with a tip diameter of <a:math xmlns:a=ā€œhttp://www.w3.org/1998/Math/MathMLā€ display=ā€œinlineā€> <a:mrow> <a:mn>1.25</a:mn> </a:mrow> <a:mspace width=ā€œ0.1emā€/> <a:mi>mm</a:mi> </a:math> . On its tip, a direct laser-writing process is used to secure a diamond containing NV centers above the fiber’s core inside a polymer structure. Additionally, a metallic direct laser-written antenna structure next to the fiber facet allows efficient microwave manipulation of NV-center spins. The sensor achieves a shot-noise-limited magnetic-field sensitivity of <d:math xmlns:d=ā€œhttp://www.w3.org/1998/Math/MathMLā€ display=ā€œinlineā€> <d:mrow> <d:mn>5.9</d:mn> </d:mrow> <d:mspace width=ā€œ0.1emā€/> <d:mi>nT</d:mi> <d:mo>/</d:mo> <d:msqrt> <d:mi>Hz</d:mi> </d:msqrt> </d:math> using a <g:math xmlns:g=ā€œhttp://www.w3.org/1998/Math/MathMLā€ display=ā€œinlineā€> <g:mn>15</g:mn> <g:mstyle displaystyle=ā€œfalseā€ scriptlevel=ā€œ0ā€> <g:mtext>āˆ’</g:mtext> </g:mstyle> <g:mtext fontfamily=ā€œtimesā€>μ</g:mtext> <g:mrow> <g:mrow> <g:mi mathvariant=ā€œnormalā€>m</g:mi> </g:mrow> </g:mrow> </g:math> -sized microdiamond at a microwave power of <m:math xmlns:m=ā€œhttp://www.w3.org/1998/Math/MathMLā€ display=ā€œinlineā€> <m:mn>50</m:mn> <m:mspace width=ā€œ0.1emā€/> <m:mi>mW</m:mi> </m:math> and an optical power of <p:math xmlns:p=ā€œhttp://www.w3.org/1998/Math/MathMLā€ display=ā€œinlineā€> <p:mrow> <p:mn>2.15</p:mn> </p:mrow> <p:mspace width=ā€œ0.1emā€/> <p:mi>mW</p:mi> </p:math> . Using lock-in techniques, we measure a sensitivity of <s:math xmlns:s=ā€œhttp://www.w3.org/1998/Math/MathMLā€ display=ā€œinlineā€> <s:mrow> <s:mn>51.8</s:mn> </s:mrow> <s:mspace width=ā€œ0.1emā€/> <s:mi>nT</s:mi> <s:mo>/</s:mo> <s:msqrt> <s:mi>Hz</s:mi> </s:msqrt> </s:math> . Furthermore, we introduce a dual-fiber concept that enables, in combination with a direct laser-written structure, independent guiding of excitation and fluorescence light and thus reduces background autofluorescence. Moreover, controlled guiding of excitation light to the diamond while avoiding sample illumination may enable operation in light-sensitive environments such as biological tissue. While the demonstrated sensitivity is achieved using a single-fiber configuration, the dual-fiber approach provides a path toward integrating smaller diamonds, where autofluorescence would otherwise limit performance. We demonstrate the capability of vector magnetic-field measurements in the type of magnetic field used in state-of-the-art ultracold quantum gas experiments, opening a potential arena in which high resolution and high sensitivity are required.