Skip to content

Coherence times of precise depth controlled NV centers in diamond

MetadataDetails
Publication Date2016-01-01
JournalNanoscale
AuthorsJunfeng Wang, Wenlong Zhang, Jian Zhang, Jie You, Yan Li
InstitutionsUniversity of Science and Technology of China, Hefei National Center for Physical Sciences at Nanoscale
Citations42

We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precise depth control using oxidative etching at 580 °C in air. By successive nanoscale etching, NV centers could be brought close to the diamond surface step by step, which enabled us to track the evolution of the number of NV centers remaining in the chip and to study the depth dependence of coherence times of NV centers with diamond etching. Our results showed that the coherence times of NV centers declined rapidly with the depth reduction in the last about 22 nm before they finally disappeared, which revealed a critical depth for the influence of a rapid fluctuating surface spin bath. Moreover, by using the slow etching method combined with low-energy nitrogen implantation, NV centers with depths shallower than the initially implanted depths can be generated, which are preferred for detecting external spins with higher sensitivity.