Thermal conductivity of high purity synthetic single crystal diamonds
At a Glance
Section titled “At a Glance”| Metadata | Details |
|---|---|
| Publication Date | 2018-04-23 |
| Journal | Physical review. B./Physical review. B |
| Authors | A. V. Inyushkin, А. Н. Талденков, Victor Ralchenko, A. P. Bolshakov, A. V. Koliadin |
| Institutions | Kurchatov Institute |
| Citations | 120 |
Abstract
Section titled “Abstract”Thermal conductivity of three high purity synthetic single crystalline diamonds has been measured with high accuracy at temperatures from 6 to 410 K. The crystals grown by chemical vapor deposition and by high-pressure high-temperature technique demonstrate almost identical temperature dependencies $\ensuremath{\kappa}(T)$ and high values of thermal conductivity, up to 24 $\mathrm{W}\phantom{\rule{0.16em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$ at room temperature. At conductivity maximum near 63 K, the magnitude of thermal conductivity reaches 285 $\mathrm{W}\phantom{\rule{0.16em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$, the highest value ever measured for diamonds with the natural carbon isotope composition. Experimental data were fitted with the classical Callaway model for the lattice thermal conductivity. A set of expressions for the anharmonic phonon scattering processes (normal and umklapp) has been proposed which gives an excellent fit to the experimental $\ensuremath{\kappa}(T)$ data over almost the whole temperature range explored. The model provides the strong isotope effect, nearly 45%, and the high thermal conductivity ($>24$ $\mathrm{W}\phantom{\rule{0.16em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}$) for the defect-free diamond with the natural isotopic abundance at room temperature.