A Study of Linearity of C-H Diamond FETs forS-Band Power Application
At a Glance
Section titled “At a Glance”| Metadata | Details |
|---|---|
| Publication Date | 2021-06-18 |
| Journal | IEEE Transactions on Electron Devices |
| Authors | Yu Fu, Xinxin Yu, Jianjun Zhou, Ruimin Xu, Bo Yan |
| Institutions | University of Electronic Science and Technology of China |
| Citations | 8 |
Abstract
Section titled “Abstract”In this article, we report a study on the dc and RF linearity performances of a hydrogen-terminated (C-H) diamond field-effect transistor. An atomic-layer-deposited Al <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>2</sub> O <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>3</sub> (ALD-Al <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>2</sub> O <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>3</sub> ) based C-H diamond (100) MOSFET was fabricated and then characterized by dc- I-V, C-V, small-signal, large-signal, pulsed I-V, and two-tone inter-modulation characteristics. The typical transfer results suggest that the presented device achieves a maximum transconductance (g <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>m-max</sub> ) × gate-voltage swing (GVS) product of 673.2 V·mS/mm, which is a record value among single-crystal diamond FETs to the best of our knowledge. The improved g <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>m</sub> -linearity in this work can be attributed to the enhanced mobility performance, and the extracted effective mobility ( μ <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>eff</sub> ) varies from 105 to 200 cm <sup xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>2</sup> / V·s. Furthermore, theoretical calculations reveal that the obtained high-performance μ <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>eff</sub> is mainly due to the low-density surface charged impurities ( ≈ 3.7×10 <sup xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>12</sup> cm <sup xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>-2</sup> ) and the alleviated surface roughness scattering. Small-signal RF measurement shows that the drain current swing (DCS) of f <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>T</sub> is as high as -434 mA/mm. Unexpectedly, the RF output power performance at 2.6 GHz suffers from the severe drain current compression under the RF input drive. The subsequent pulsed I- V results reveal that the cause could be ascribed to the drain-lag trapping effect. Even so, the device still shows attractive IM3-to-Carrier ratio (-C/IM3) values in the linear region, which indicates that the diamond MOSFET is a prospective candidate for the RF linearity application.
Tech Support
Section titled “Tech Support”Original Source
Section titled “Original Source”References
Section titled “References”- 2014 - Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric [Crossref]