Fast Wide‐Field Quantum Sensor Based on Solid‐State Spins Integrated with a SPAD Array
At a Glance
Section titled “At a Glance”| Metadata | Details |
|---|---|
| Publication Date | 2023-07-03 |
| Journal | Advanced Quantum Technologies |
| Authors | Guoqing Wang, Francesca Madonini, Boning Li, Changhao Li, Jinggang Xiang |
| Institutions | Politecnico di Milano, Massachusetts Institute of Technology |
| Citations | 44 |
Abstract
Section titled “Abstract”Abstract Achieving fast, sensitive, and parallel measurement of a large number of quantum particles is an essential task in building large‐scale quantum platforms for different quantum information processing applications such as sensing, computation, simulation, and communication. Current quantum platforms in experimental atomic and optical physics based on CMOS sensors and charged coupled device cameras are limited by either low sensitivity or slow operational speed. Here an array of single‐photon avalanche diodes is integrated with solid‐state spin defects in diamond to build a fast wide‐field quantum sensor, achieving a frame rate up to 100 kHz. The design of the experimental setup to perform spatially resolved imaging of quantum systems is presented. A few exemplary applications, including sensing DC and AC magnetic fields, temperature, strain, local spin density, and charge dynamics, are experimentally demonstrated using a nitrogen‐vacancy ensemble diamond sample. The developed photon detection array is broadly applicable to other platforms such as atom arrays trapped in optical tweezers, optical lattices, donors in silicon, and rare earth ions in solids.
Tech Support
Section titled “Tech Support”Original Source
Section titled “Original Source”References
Section titled “References”- 2011 - Quantum Computation and Quantum Information