Optical Tweezers Assembled Nanodiamond Quantum Sensors
At a Glance
Section titled āAt a Glanceā| Metadata | Details |
|---|---|
| Publication Date | 2024-09-18 |
| Journal | Nano Letters |
| Authors | Adam Stewart, Ying Zhu, Yiting Liu, David Simpson, Peter J. Reece |
| Institutions | UNSW Sydney, The University of Melbourne |
| Citations | 14 |
Abstract
Section titled āAbstractāHere we show that gradient force optical tweezers can be used to mediate the self-assembly of nanodiamonds into superstructures, which can serve as optically trapped nanoscale quantum probes with superior magnetic resonance sensing capabilities. Enhanced fluorescence rates from nitrogen-vacancy NV<sup>-</sup> defect centers enable rapid acquisition of optically detected magnetic resonance (ODMR), and shape-induced forces can improve both positioning accuracy and orientation control. The use of confocal imaging can isolate the signal from individual nanodiamonds within the assembly, thereby retaining the desirable properties of a single crystal probe. The improvements afforded by the use nanodiamond assemblies has the potential to resolve dynamic changes through, for example, real-time monitoring of the ODMR contrast.