Skip to content

The role of volume averaging effects, beam hardening, and phantom scatter in dosimetry of grid therapy

MetadataDetails
Publication Date2024-10-29
JournalPhysics in Medicine and Biology
AuthorsAhtesham Ullah Khan, Bishwambhar Sengupta, Indra J. Das
InstitutionsNorthwestern University, Northwestern Memorial Hospital

Abstract Objective . Current reference dosimetry methods for spatially fractionated radiation therapy (SFRT) assume a negligible beam quality change, perturbation, or volume-averaging correction factor. Therefore, the aim of this work was to investigate the impact of the grid collimators on the dosimetric characteristics of a 6 MV photon beam. A detector-specific correction factor, <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:msubsup> <mml:mi>k</mml:mi> <mml:mrow> <mml:msub> <mml:mi>Q</mml:mi> <mml:mrow> <mml:mtext>grid</mml:mtext> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mtext> </mml:mtext> <mml:mtext> </mml:mtext> <mml:msub> <mml:mi>Q</mml:mi> <mml:mrow> <mml:mtext>msr</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow> <mml:mtext> </mml:mtext> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mtext>grid</mml:mtext> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mtext>msr</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> </mml:msubsup> </mml:mrow> </mml:math> , was proposed. Several dosimeters were evaluated for their ability to measure both reference dose and grid output factors (GOFs). Approach . A Monte Carlo model of a grid collimator was created to study the change in the depth dose characteristics with the grid collimator. The impact of the collimator on the percent depth dose (PDD), electron contamination, and average photon energy was investigated. The <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:msubsup> <mml:mi>k</mml:mi> <mml:mrow> <mml:msub> <mml:mi>Q</mml:mi> <mml:mrow> <mml:mtext>grid</mml:mtext> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mtext> </mml:mtext> <mml:mtext> </mml:mtext> <mml:msub> <mml:mi>Q</mml:mi> <mml:mrow> <mml:mtext>msr</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow> <mml:mtext> </mml:mtext> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mtext>grid</mml:mtext> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mtext>msr</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> </mml:msubsup> </mml:mrow> </mml:math> correction factors were calculated for two reference-class micro ion chambers. The reference dose and GOFs were measured with a grid collimator using six ion chambers, two silicon diodes, and a diamond detector. Main results. The PDD in the presence of the grid was observed to be steeper compared to the open field. The average photon energy increased from 1.33 MeV to 1.74 MeV with the presence of the grid collimator. The dose contribution by scattered photons was significantly higher at deeper regions for the open field compared to the grid field. The <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:msubsup> <mml:mi>k</mml:mi> <mml:mrow> <mml:msub> <mml:mi>Q</mml:mi> <mml:mrow> <mml:mtext>grid</mml:mtext> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mtext> </mml:mtext> <mml:mtext> </mml:mtext> <mml:msub> <mml:mi>Q</mml:mi> <mml:mrow> <mml:mtext>msr</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow> <mml:mtext> </mml:mtext> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mtext>grid</mml:mtext> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mtext>msr</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> </mml:msubsup> </mml:mrow> </mml:math> correction was calculated to be &lt;0.5%. The reference dose for all detectors, except for the CC13 and CC04 chambers, was within 1% of each other. The CC13 under-responded up to 3.2% due to volume-averaging effects. The GOFs calculated for all detectors, except Razor and A16, were within 1% of each other. Significance . The phantom scatter dictates the change in the PDD with the presence of the grid. The micro ion chambers exhibit negligible <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mrow> <mml:msubsup> <mml:mi>k</mml:mi> <mml:mrow> <mml:msub> <mml:mi>Q</mml:mi> <mml:mrow> <mml:mtext>grid</mml:mtext> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mtext> </mml:mtext> <mml:mtext> </mml:mtext> <mml:msub> <mml:mi>Q</mml:mi> <mml:mrow> <mml:mtext>msr</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow> <mml:mtext> </mml:mtext> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow> <mml:mtext>grid</mml:mtext> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>f</mml:mi>

  1. 2020 - Characterization of a microSilicon diode detector for small-field photon beam dosimetry [Crossref]
  2. 2021 - Technical note: characteristics of a microSilicon X shielded diode detector for photon beam dosimetry [Crossref]
  3. 1999 - AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams [Crossref]
  4. 2001 - Absorbed dose determination in external beam radiotherapy an international code of practice for dosimetry based on standards of absorbed dose to water
  5. 2021 - Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 medical simulation benchmarking group [Crossref]
  6. 2010 - Evaluation of a commercially-available block for spatially fractionated radiation therapy [Crossref]
  7. 2011 - Modeling the TrueBeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations [Crossref]
  8. 2008 - Small fields: nonequilibrium radiation dosimetry [Crossref]
  9. 2021 - Report of AAPM task group 155: megavoltage photon beam dosimetry in small fields and non-equilibrium conditions [Crossref]