Skip to content

High-Q plasmonic resonances from a transfer-printed diamond ring on a silver surface

MetadataDetails
Publication Date2025-08-01
JournalJapanese Journal of Applied Physics
AuthorsKosuke Takada, Ryota Katsumi, Daichi Sato, K. Kawai, Takashi Yatsui

Abstract Optically addressable point defects in diamond are promising physical platforms in quantum technologies. In particular, defects embedded in plasmonic devices can interact strongly with photons and provide a robust approach to engineering spin-photon interfaces. However, diamond-based plasmonic devices have low quality factors of <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mi>Q</mml:mi> <mml:mo>≲</mml:mo> <mml:mn>1</mml:mn> <mml:mn>0</mml:mn> </mml:math> , constrained by fabrication difficulties. This study demonstrates the high- <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mi>Q</mml:mi> </mml:math> plasmonic resonance of optical emissions from nitrogen-vacancy centers in diamond ring structures onto a silver surface, and experimentally shows that <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mi>Q</mml:mi> <mml:mo>≈</mml:mo> <mml:mn>179</mml:mn> </mml:math> . The proposed device can be easily fabricated using the transfer printing technique. These results address the lack of high- <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mi>Q</mml:mi> </mml:math> plasmonic cavities in diamond-based technologies.