High-Q plasmonic resonances from a transfer-printed diamond ring on a silver surface
At a Glance
Section titled “At a Glance”| Metadata | Details |
|---|---|
| Publication Date | 2025-08-01 |
| Journal | Japanese Journal of Applied Physics |
| Authors | Kosuke Takada, Ryota Katsumi, Daichi Sato, K. Kawai, Takashi Yatsui |
Abstract
Section titled “Abstract”Abstract Optically addressable point defects in diamond are promising physical platforms in quantum technologies. In particular, defects embedded in plasmonic devices can interact strongly with photons and provide a robust approach to engineering spin-photon interfaces. However, diamond-based plasmonic devices have low quality factors of <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mi>Q</mml:mi> <mml:mo>≲</mml:mo> <mml:mn>1</mml:mn> <mml:mn>0</mml:mn> </mml:math> , constrained by fabrication difficulties. This study demonstrates the high- <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mi>Q</mml:mi> </mml:math> plasmonic resonance of optical emissions from nitrogen-vacancy centers in diamond ring structures onto a silver surface, and experimentally shows that <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mi>Q</mml:mi> <mml:mo>≈</mml:mo> <mml:mn>179</mml:mn> </mml:math> . The proposed device can be easily fabricated using the transfer printing technique. These results address the lack of high- <mml:math xmlns:mml=“http://www.w3.org/1998/Math/MathML” overflow=“scroll”> <mml:mi>Q</mml:mi> </mml:math> plasmonic cavities in diamond-based technologies.