Analysis of Surface Characteristics and Spoke-shaped Removal through Ultra-precision Machining of Germanium Materials
At a Glance
Section titled āAt a Glanceā| Metadata | Details |
|---|---|
| Publication Date | 2023-06-01 |
| Journal | Journal of the Korean Society for Precision Engineering |
| Authors | Joong kyu Ham, Jong Gyun Kang, Seong Hyeon Park, Hwan Ho Maeng, Min Woo Jeon |
| Citations | 2 |
Abstract
Section titled āAbstractāGermanium, an optical material, has high transmittance and refractive index and low light scattering in the infrared region, and research is being conducted to utilize it in various industrial fields. Various forms of optical lenses can be subjected to ultra-precision machining with high quality surface roughness, and they form accuracy through single point diamond turning (SPDT). In particular, the diamond tool with a negative rake angle and the u-LAM process that applies a 1,064 nm laser to the material have been studied to fabricate brittle materials into optical lenses. In this study, the effects of process parameters, such as laser power (W), spindle speed (RPM), feed rate (mm/min), and depth of cut (μm), on the surface roughness of a sub-nanometer scale and the occurrence of defects during the machining process were analyzed for Germanium materials. The process of removing these defects was also analyzed.