Recent Progress of Diamond Devices for RF Applications
At a Glance
Section titled “At a Glance”| Metadata | Details |
|---|---|
| Publication Date | 2016-10-01 |
| Authors | Makoto Kasu, Toshiyuki Oishi |
| Institutions | Saga University |
| Citations | 7 |
Abstract
Section titled “Abstract”Diamond possesses exceptional physical properties, such as a high breakdown field and carrier mobility. It is therefore expected to be highly efficient for high-power RF devices. We identify hole carrier doping in diamond using nitrogen dioxide (NO <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>2</sub> ). Furthermore, we find that an aluminum oxide (Al <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>2</sub> O <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>3</sub> ) passivation layer greatly improves the thermal stability of the hole channel. These two technologies enable us to create thermally stable high-performance diamond field-effect transistors (FETs). The diamond FET shows a maximum IDS value of -1.35 A/mm, cut-off frequencies f <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>T</sub> and f <sub xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”>MAX</sub> of 35 GHz and 70 GHz, respectively, and an RF output power density of 2 W/mm at 1 GHz.
Tech Support
Section titled “Tech Support”Original Source
Section titled “Original Source”References
Section titled “References”- 2004 - Low-temperature Al2O3 atomic layer deposition [Crossref]
- 2012 - Diamond Field-Effect Transistors with 1.3A/mm Drain Current Density by Al2O3 Passivation Layer [Crossref]