Skip to content

Imaging the magnetic field distribution of a micro-wire with the nitrogen-vacancycolor center ensemble in diamond

MetadataDetails
Publication Date2020-12-03
JournalApplied Optics
AuthorsTianyu Wang, Zhonghao Li, Rui Zhao, Qi Guo, Xin Li
InstitutionsNorth University of China
Citations6

Imaging the high-precision magnetic distribution generated by the surface current of chips and chip-like structures is an important way to measure thermal parameters of core components. Based on a high-concentration nitrogen-vacancy color center ensemble in diamond, the imaging magnetic field distribution is performed in a wide-field microscope. The magnetic vector detection and reduction model is verified first with continuous wave optical detection of magnetic resonance technology. By systematically measuring the distribution of the electromagnetic field generated on the surface of the micro-wire under different microwave power and different laser power conditions, the imaging quality of the wide-field imaging system can be optimized by adjusting the experimental parameters. Then, the electromagnetic field distribution imaging on the wire surface under different current intensities is obtained. In this way, accurate measurement and characterization of the magnetic distribution on the surface of the micro-wire is realized. Finally, at the field of view in the range of <mml:math xmlns:mml=ā€œhttp://www.w3.org/1998/Math/MathMLā€ display=ā€œinlineā€> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mn>480</mml:mn> </mml:mrow> <mml:mspace width=ā€œthickmathspaceā€/> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mtext>µ</mml:mtext> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mi mathvariant=ā€œnormalā€>m</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>Ɨ</mml:mo> <mml:mn>270</mml:mn> <mml:mspace width=ā€œthickmathspaceā€/> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mtext>µ</mml:mtext> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mi mathvariant=ā€œnormalā€>m</mml:mi> </mml:mrow> </mml:mrow> </mml:math> , the magnetic intensity is an accurate characterization in 0.5-10 Gs, and the magnetic detection sensitivity can be increased from 100 to <mml:math xmlns:mml=ā€œhttp://www.w3.org/1998/Math/MathMLā€ display=ā€œinlineā€> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mn>20</mml:mn> </mml:mrow> <mml:mspace width=ā€œthickmathspaceā€/> <mml:mtext>µ</mml:mtext> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:msup> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mi mathvariant=ā€œnormalā€>T</mml:mi> </mml:mrow> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mi mathvariant=ā€œnormalā€>H</mml:mi> <mml:mi mathvariant=ā€œnormalā€>z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mn>1</mml:mn> <mml:mrow class=ā€œMJX-TeXAtom-ORDā€> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . The results show the accurate magnetic distribution imaging for chips and chip-like structures, which provide a new method for chip function detection and fault diagnosis based on precision quantum measurement technology.