Skip to content

TCAD Analysis of O-Terminated Diamond m-i-p+ Diode Characteristics Dependencies on Surface States CNL and Metal-Induced Gap States

MetadataDetails
Publication Date2021-12-02
JournalIEEE Transactions on Electron Devices
AuthorsYerragudi Pullaiah, Mohit Bajaj, Oves Badami, Kaushik Nayak
InstitutionsIndian Institute of Technology Hyderabad
Citations3

In this article, a 2-D TCAD simulation study on the forward and reverse characteristics of oxygen-terminated diamond (D:O) m-i-p <sup xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”&gt;+&lt;/sup> Schottky barrier diode (SBD) is carried out considering the effects of Fermi level pinning due to surface states (SSs) and metal-induced gap states (MIGS). The device simulation considers drift-diffusion transport, SS charge neutrality level (CNL), MIGS through Fermi level pinning parameter ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${S}$ </tex-math></inline-formula> ), doping and temperature-dependent mobility model, incomplete ionization of dopants, and impact ionization models. The simulation validation is carried out for Al/Au Schottky metals at room temperature and at higher temperatures. A good comparison between the simulation and experiment is obtained around turn-on voltage ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${V}{T{0}}~\sim ~1.0$ </tex-math></inline-formula> V for Al and ~2.0 V for Au Schottky contacts) and for anode voltage ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${V}{A}{)} &gt; {V}{T{0}}$ </tex-math></inline-formula> . Through simulations, we estimated the type of SSs and their quantity, and the position of CNL ( <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${E}{\text {CNL}}$ </tex-math></inline-formula> ) within the diamond bandgap. The effect of <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${E}{\text {CNL}}$ </tex-math></inline-formula> position and pinning parameter on the forward and reverse characteristics is also simulated. The impact of <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>${E}{\text {CNL}}$ </tex-math></inline-formula> and SS on reverse leakage current is also analyzed using a nonlocal barrier tunneling model. At higher temperatures, a good match between simulation and experiment of forward characteristics is achieved.

  1. 2014 - Wide temperature (10K-700K) and high voltage ($\sim~1000$ V) operation of CH diamond MOSFETs for power electronics application
  2. **** - 200 V, 4 MV/cm lateral diamond MOSFET