Skip to content

Deep-Ultraviolet Thermoreflectance Thermal Imaging of GaN High Electron Mobility Transistors

MetadataDetails
Publication Date2022-05-31
Journal2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)
AuthorsDaniel Shoemaker, Anwarul Karim, Dustin Kendig, Hyungtak Kim, Sukwon Choi
InstitutionsHongik University, Pennsylvania State University
Citations6

Featuring broadband operation and high efficiency, gallium nitride (GaN)-based radio frequency (RF) power amplifiers are key components to realize the next generation mobile network. However, to fully implement GaN high electron mobility transistors (HEMT) for such applications, it is necessary to overcome thermal reliability concerns stemming from localized extreme temperature gradients that form under high voltage and power operation. In this work, we developed a deep-ultraviolet thermoreflectance thermal imaging capability, which can potentially offer the highest spatial resolution among diffraction-limited far-field optical thermography techniques. Experiments were performed to compare device channel temperatures obtained from near-ultraviolet and deep-ultraviolet wavelength illumination sources for the proof of concept of the new characterization method. Deep-ultraviolet thermoreflectance imaging will facilitate the study of device self-heating within transistors based on GaN and emerging ultra-wide bandgap semiconductors (e.g., β-Ga2O3, AlxGa1-xN, and diamond) subjected to simultaneous extreme electric field and heat flux conditions.