Skip to content

Identification of the Current Transport Mechanism in a Vertical Zr/LaB6/p-Diamond Schottky Barrier Diode for Low-Power Highly Sensitive Temperature Sensor

MetadataDetails
Publication Date2022-12-29
JournalIEEE Transactions on Electron Devices
AuthorsGuoqing Shao, Juan Wang, Yanfeng Wang, Wei Wang, Hongxing Wang
InstitutionsXi’an Jiaotong University
Citations9

We proposed a low-power highly sensitive temperature sensor based on a diamond Schottky barrier diode (SBD) with an inserted lanthanum hexaboride (LaB6) interlayer at the Zr/diamond interface. The Zr/LaB6/p-diamond SBD exhibits excellent thermal stability with rectification ratios higher than <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$10^{{10}}$ </tex-math></inline-formula> in a wide temperature range of 298-573 K. The Schottky barrier height (SBH) increases, whereas the ideality factor decreases with increasing temperature. This SBD delivers a high SBH of 2.06 eV and an ideality factor close to 1 at 573 K. In addition, a thermionic emission (TE) theory assumes the Gaussian distribution of SBH to be the dominating current transport mechanism (CTM) for Zr/LaB6/diamond SBD, due to the existence of SBH inhomogeneities at Zr/diamond interface. Meanwhile, the extracted values of the mean SBH and Richardson constant are 2.74 eV and 82.43 A/cm <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$^{{2}}~\cdot \text{K}^{{2}}$ </tex-math></inline-formula> , respectively, which are much closer to their theoretical values of 2.72 eV and 96 A/cm <inline-formula xmlns:mml=“http://www.w3.org/1998/Math/MathML” xmlns:xlink=“http://www.w3.org/1999/xlink”> <tex-math notation=“LaTeX”>$^{{2}}\cdot ~\text{K}^{{2}}$ </tex-math></inline-formula> , respectively. Furthermore, a high thermal sensitivity of 5.1 mV/K is obtained for a temperature sensor based on this SBD. Our results suggest the great potential of adopting this SBD structure for high-performance temperature sensors.

  1. 2018 - Lake Shore Cryotronics